Смирнова И. М. Геометрия. 10—11 класс : учебник для учащихся общеобразоват. учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. — 5-е изд., испр. и доп. — М., 2008. — 288 с. : ил.
Предлагаемый учебник двухуровневый: с учетом параграфов со звездочкой он соответствует профильному уровню, без их учета — базовому. Наряду с традиционными вопросами геометрии пространства в качестве дополнительного в учебник включен материал научно-популярного и прикладного характера, а также помещены нестандартные и исследовательские задачи, исторические сведения. Большое внимание уделено использованию средств наглядности.
Данный учебник концептуально согласуется с учебниками по алгебре и началам анализа А. Г. Мордковича.
Вы начинаете изучать один из самых увлекательных и важных разделов геометрии — стереометрию. Зачем же она нужна? Во-первых, именно она знакомит с разнообразием пространственных форм, законами восприятия и изображения пространственных фигур, формирует необходимые пространственные представления. Во-вторых, стереометрия дает метод научного познания, способствует развитию логического мышления. По выражению академика А. Д. Александрова, геометрия в своей сущности и есть такое соединение живого воображения и строгой логики, в котором они взаимно организуют и направляют друг друга.
Кроме этого, изучение стереометрии способствует приобретению необходимых практических навыков в изображении, моделировании и конструировании пространственных фигур, в измерении основных геометрических величин (длин, углов, площадей, объемов).
Наконец, стереометрия и сама по себе очень интересна. Она имеет яркую историю, связанную с именами знаменитых ученых: Пифагора, Евклида, Архимеда, И. Кеплера, Р. Декарта, Л. Эйлера, Н. И. Лобачевского и др.
Многие удивительно красивые пространственные формы придумал не сам человек, их создала природа. Например, кристаллы — природные многогранники. Свойства кристаллов, которые вы изучали на уроках физики и химии, определяются их геометрическим строением, в частности симметричным расположением атомов в кристаллической решетке. Формы правильных, полуправильных и звездчатых многогранников находят широкое применение в живописи, скульптуре, архитектуре, строительстве. Выдающийся архитектор XX столетия Лe Корбюзье писал: «Только неотступно следуя законам геометрии, архитекторы древности могли создать свои шедевры. Неслучайно говорят, что пирамида Хеопса — немой трактат по геометрии, а греческая архитектура — внешнее выражение геометрии Евклида. Прошли века, но роль геометрии не изменилась. Она по-прежнему остается грамматикой архитектора».